If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-6x-54=0
a = 3; b = -6; c = -54;
Δ = b2-4ac
Δ = -62-4·3·(-54)
Δ = 684
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{684}=\sqrt{36*19}=\sqrt{36}*\sqrt{19}=6\sqrt{19}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{19}}{2*3}=\frac{6-6\sqrt{19}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{19}}{2*3}=\frac{6+6\sqrt{19}}{6} $
| 5k–3(2k–)–9= | | 3(5x+6)=-46+49 | | (x+7)/20=3/4 | | 8-x-5=12 | | Y=4x-x² | | x+36+x+30=50 | | (h+5)2=34 | | -3x-1=-x-5X=19 | | (-16x-30)-(-14x-6)=0 | | 4x+8=6× | | X+4/3+x+2/2=5 | | X-y=2800 | | 647=-2(4n+6) | | 2x+◻️=49. | | 18=6/y | | 2x+◻️=49 | | 3x-9+3=15 | | 1/5(20x+45)-13=-3/4(24x-24) | | 16x^2/144=1 | | 8/5+1/3t=7 | | -9j-1=9-3 | | 3f-9f+f-6+3f-9=60 | | 1/5(20x+45)-13=-3/4(24-24) | | 18t-2=t+8+t-6 | | 7m-14=60 | | 4+(1/4)x+17=-35 | | 1/5(20x+45)-13=-3/4(24x=24) | | 2x+29+9x-13=180 | | 54=3x+5 | | 2(v-14)=4 | | 18.6k+5=-0.2(4k-10)-0.6k | | 7+7x-44=100 |